Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Language
Journal
Document Type
Year range
1.
Cell ; 2023.
Article in English | EuropePMC | ID: covidwho-2296527

ABSTRACT

Prime-boost regimens for COVID-19 vaccines elicit poor antibody responses against Omicron-based variants and employ frequent boosters to maintain antibody levels. We present a natural infection-mimicking technology that combines features of mRNA- and protein nanoparticle-based vaccines through encoding self-assembling enveloped virus-like particles (eVLPs). eVLP assembly is achieved by inserting an ESCRT- and ALIX-binding region (EABR) into the SARS-CoV-2 spike cytoplasmic tail, which recruits ESCRT proteins to induce eVLP budding from cells. Purified spike-EABR eVLPs presented densely-arrayed spikes and elicited potent antibody responses in mice. Two immunizations with mRNA-LNP encoding spike-EABR elicited potent CD8+ T-cell responses and superior neutralizing antibody responses against original and variant SARS-CoV-2 compared to conventional spike-encoding mRNA-LNP and purified spike-EABR eVLPs, improving neutralizing titers >10-fold against Omicron-based variants for three months post-boost. Thus, EABR technology enhances potency and breadth of vaccine-induced responses through antigen presentation on cell surfaces and eVLPs, enabling longer-lasting protection against SARS-CoV-2 and other viruses. Graphical The SARS-CoV-2 spike protein was engineered to recruit ESCRT proteins to its cytoplasmic tail by adding an EABR motif, which induced the assembly of enveloped virus-like particles. A COVID-19 mRNA vaccine encoding spike-EABR elicited superior antibody responses compared to a conventional mRNA vaccine in mice.

SELECTION OF CITATIONS
SEARCH DETAIL